
A. Gradient derivation

The i-th element of the gradient of the Gaussian, is

∇iN (τ) =
∂iN (τ)

∂τi
(24)

=
dN (τi)

dτi

n
∏

j=1

j ̸=i

N (τj) (25)

= −
τi
σ2

N (τi)

n
∏

j=1

j ̸=i

N (τj) (26)

= −
τi
σ2

N (τ), (27)

where we use the overloaded convention that N (τ) takes a

vector τ and N (τi) the i-th element, a scalar τi, to produce

the one or n-dimensional Gaussian.

This differs from Fischer and Ritschel [7] who only blur

in the direction in which they differentiate, as in

∇iN (τi) =
τi
σ2

N (τi), (28)

while it is more consistent with higher-order differentials to

blur all dimensions.

B. Smooth Gradient Marginalization

The sampling of 1D Gaussian gradient was derived by Fis-

cher and Ritschel [7] who constructed a PDF pG. For a n-

dimensional Gaussian gradient, we need to marginalize and

sample the dimensions individually. Marginalization would

be integration over all dimensions j ̸= i, except the one we

look for i, so:
∫

τj ̸=i

pG(τ)dτj ̸=i. (29)

Writing out the CDF, a positivized and scaled version of the

PDF p, where 1/Z is the partition function, gives

1

Z

∫

τj ̸=i

1

2
|∇iN (τ)|dτj ̸=i = (30)

1

Z

∫

τj ̸=i

|∇iN (τ)|dτj ̸=i. (31)

Writing the n-D Gaussian as product of n 1D Gaussians

1

Z

∫

τj ̸=i

|∇i

N
∏

j=1

N (τj)|dτj ̸=i. (32)

As we differentiate only by τi, all other factors are 1, so

1

Z

∫

τj ̸=i

|∇iN (τi)|dτj ̸=i. (33)

As we are integrating over all τj ̸=1, integration becomes

multiplication with the domain’s measure, 1.

|∇iN (τi)|. (34)

C. Hessian derivation

The diagonal elements of the Hessian of the Gaussian are

∇2N (τ)ii =
∂2
i N (τ)

∂2τi
(35)

=
∂

∂τi









−
τi
σ2

N (τi)

n
∏

j=1

j ̸=i

N (τj)









(36)

=
∂

∂τi

(

−
τi
σ2

N (τi)
)

n
∏

j=1

j ̸=i

N (τj) (37)

=

(

−
1

σ2
+

τ2i
σ4

) n
∏

j=1

j ̸=i

N (τj) (38)

=

(

−
1

σ2
+

τ2i
σ4

)

N (τ). (39)

The non-diagonals of the Hessian of the Gaussian are

∇2N (τ)ij =
∂2N (τ)

∂iτi∂jτj
(40)

=
∂

∂τj






−

τi
σ2

N (τi)

n
∏

k=1
k ̸=i

N (τk)






(41)

=
τi
σ2

N (τi)
τj
σ2

N (τj)
n
∏

k=1
k ̸=i,j

N (τk) (42)

=
τi
σ2

τj
σ2

N (τi)N (τj)

n
∏

k=1
k ̸=i,j

N (τk) (43)

=
τiτj
σ4

N (τ). (44)

A remark: It might appear, that diagonal is a special case

of off-diagonal, but for differentiation, that is not true, as

on the diagonal, the variable we differentiate in respect to

appears twice, in the sense that duv/du = v and duv/dv =
u, but duu/du = 2u.

D. Sampling diagonal of Hessian

Similar to Sec. B, for the diagonal of the Hessian, we

can sample each dimension independently. Thus, we can

first derive the valid distribution of the second-order deriva-

tive of the one-dimensional Gaussian by positivization and

scaling, and it will apply to higher dimensions: The one-

dimensional Gaussian’s second-order derivative is

(

−
1

σ2
+

τ2i
σ4

)

N (τi) (45)

σ σ

1/4

3/4

1/2

1

1/2

β/4

σ σ σ σ

0

Target Derivative Positivized PDF CDF

0

0 0

1/4

3/4

1

0
σ σ σ σ

Figure 6. Detailed plots of the functions involved in the derivation of the CDF for the diagonal elements of ∇2
N , extending Fig. 3.

The roots of Eq. 45 are the τi for which

(

−
1

σ2
+

τ2i
σ4

)

N (τi) = 0. (46)

As N (τi) > 0 for all τi, the product can be 0 only if

−
1

σ2
+

τ2i
σ4

= 0 and hence (47)

τi = ±σ. (48)

The function value between −σ < τi ≤ σ is negative

and hence needs to be positivised. Since the second-order

derivative should integrate to the gradient of the Gaussian,

we know that it reaches zero as τi reaches infinity. In con-

junction with the fact that the second-order derivative is

symmetric about the y-axis, we can conclude that the in-

tegral of the interval −σ < τi ≤ σ should be twice the size

of the integral of τi ≤ −σ = τi > σ. Thus, after positiviza-

tion, the CDF should be scaled, such that it is 1

4
at τi = −σ.

Solving for these equalities, we can get:

β∇N (−σ) =
1

4
(49)

β =
1

4∇N (−σ)
. (50)

So, for the positivised rescaled second-order derivative

as a PDF of the distribution:

pHii = |β∇2N (τi)|. (51)

We can get the integrating constant by flipping and trans-

lating the scaled gradient of Gaussian to arrive at the CDF

function for the intervals:

PH

ii (τi) =















β∇N (τi) if τi < −σ,

1

2
+β∇N (τi) if τi ∈ [−σ, σ]

1−β∇N (τi) if τi > σ.

(52)

E. Grey-box differentials

Sometimes, differentials are in respect to a function that

is a composition z = f(y = g(x)) of an inner function

with known analytic differentials g (white box) and an outer

function f with differentials that need to be sampled (black

box). For first order (gradient), this is

∇z(z = f(g(x))) = (∇xg(x))
T · ∇yf(y = g(x)),

which means to take the Jacobian (as both g and f in general

are vector-valued) of the inner function g in respect to the

inner argument x and vector-matrix multiply this with the

gradient of the outer function f but in respect to the outer

argument y. For the second order it is

∇2

z
f(g(x)) ≈ (∇xg(x))

T · ∇2

y
f(g(x)) · ∇xg(x)

which means again to take the gradient of the inner function,

but multiply it with the Hessian, instead of the Jacobian of

the composition in respect to the outer argument [17].

The aim of this exercise is to have the sampled gradients

handle only the black-box part and the analytic gradients

handle the non-sampled parts. As the analytic parts are typi-

cally large (e.g., in the order of the size of a neural network)

compared to the number of physical rendering parameters

(placement of light, cameras or objects), this can provide

substantial advantages.

F. BFGS/LBFGS method

Quasi-Newton methods are also a way to utilize the second

order information for optimization, however, they approxi-

mate this information with zero or first order information.

We tested the family of algorithms from the quasi-Newton

methods that is known to be most effective, the BFGS al-

gorithms [30]. For this family of algorithms, the vanilla

BFGS algorithm [29], along with BFGS with Armijo-Wolfe

line search [22], and LBFGS [22], were tested, but they

only converge for the QUAD task. This is probably due to

the noisy nature of the derivative estimation. To this end,

damped BFGS [25] and adaptive finite difference BFGS [1]

were also added, but neither changed the convergence of

other tasks.

G. Comparing to analytical Hessians

To further validate our approach, we investigate a task

where the analytic Hessians are available: the optimiza-

tion of a sphere’s Phong BRDF (7 unknowns) under point

illumination. We use this task to evaluate both analyti-

cal and sampled derivatives, as well as the corresponding

first and second-order methods that employ them in Fig. 7.

The dashed lines indicate the first-order methods, while the

solid lines represent the second-order methods. We see that

1st order sampled

2nd order sampled

1st order analytic

2nd order analytic

L
o
g
 e

rr
o
r

Log time

In
it

O
u
rs

T
ar

g
et

Figure 7. BRDF optimization.

the sampled method is less accurate and takes longer due

to the sample size and the bandwidth of sampling. The

second-order methods outperform the first-order ones in

both respects. We show the outcome of our second-order

optimization denoted as ’Ours’ in Fig. 7.

H. Positive-Definite Hessians

Naive Newton will fail for cases where the problem’s Hes-

sian is not positive semi-definite (PSD). For a non-positive

definite Hessian, there may exist a unbounded, negative

eigenvalue. This means that when the Hessian is applied to

a gradient vector, it may flip the gradient vector and cause

opposite divergence from the gradient’s descent direction.

Although optimization is separate from our contribution

of stochastic gradient estimation, we demonstrate how our

method deals with this issue with an example. To this end,

consider a negated 2D Gaussian −N (0, σ1) whose Hes-

sian is non-PSD everywhere. Its convolution with a second

Gaussian −N (0, σ2) results in a third Gaussian −N (0, σ3),
whose Hessian is also not PSD everywhere. In this exam-

ple, we know the analytic expressions of all the Gaussians,

so we can compute their Hessians and compare them to our

estimates. The mean error of our method across the interval

(−3, 3)2 is within 1 × 10−4 for 100 samples. With Hes-

sian modification and trust region, running an optimization

finds the correct minimum at (0,0) for any starting point in

(−3, 3)2. Fig. 8 shows the optimization error across an en-

semble of 20 runs in addition to a top-view of the optimiza-

Analytic

Sampled

L
o
g
 e

rr
o
r

Log time

Figure 8. Optimization on a problem with non-PSD Hessians.

tion trajectories for both the analytic and sampled deriva-

tives. This indicates that, for the right combination of esti-

mator and optimizer, non-PSD is not necessarily a problem.

I. Robustness analysis

We investigate our method’s robustness to:

Initialization. All our experiments are performed over an

ensemble of 20 random starting points. The reported num-

bers and findings are the average of these optimization out-

comes.

Hessian sample count. We repeated the MUG task with

different numbers of samples used to estimate the Hessian

during optimization (using multiples of two, due to anti-

thetic sampling). Our overall findings are consistent with

prior work and indicate that increasing the number of esti-

mation samples does help convergence. However, the in-

crease timed for higher sample counts is not offset by im-

proved convergence for this task, as the per-iteration conver-

gence gain does not sufficiently compensate for the slow-

down (left subplot in Fig. 10). This indicates that the min-

imal number of antithetic samples (two) can be optimal for

a relevant task.

Rendering MC noise. We have repeated the MUG exper-

iment with 0.25×, 0.5×, 1×, 2×, and 3× the number of

rendering samples and did not observe significant change

in optimization quality and convergence. However, as the

sample count for rendering increased, the time taken to ren-

der each image is longer, leading to a slower convergence

rate for higher sample counts (center subplot in Fig. 10).

This provides us with a data point that noise from low-spp

MC rendering is not a dominating limiting factor for our

method, although a more in-depth investigation would be

needed to reliably confirm this across all experiments.

Real-world compression noise. We repeated the MUG task

with JPEG compression at the 2%, 4%, 6%, 9%, and 14%

levels and did not observe significant degradation in conver-

gence (right subplot in Fig. 10). The difference in the final

result is caused by the loss calculation between the rendered

image and the noisy, compressed image.

In
it

O
u

rs
T

ar
g
et

QUAD BOX2 BOX10 MUG SHADOW BUNNY TEXTURE CNN5

Figure 9. Overview of all tasks we study (columns): the first row shows the task initialization, the starting point of the optimization. The

middle row shows the outcome of optimizing with our estimated Hessians with OursHVPA, while the bottom row shows the ground truth

for each task.

L
o
g

 e
rr

o
r

Log time

2

14964

JPG noise

2

10

8

6

4L
o
g
 e

rr
o
r

Log time

Hessian samples

L
o
g

 e
rr

o
r

Log time

8

96

64

32

16

MC samples

Figure 10. Robustness evaluation (see text). All plots are dis-

played on a log-error vs. log-time scale.

J. How much variance is reduced?

In Fig. 11, we perform a variance analysis of the different

estimators on different differentiable quantities. We see that

all estimators converge linearly in a log-log plot. The opti-

mal estimator (dotted) has the lowest variance and hence

would lead to the least noise in optimization, but at the ex-

pense of evaluating quadratically many elements for Hes-

sians. Our aggregate sampling (solid line) performs slightly

worse, but much, better than uniform sampling (thin line)

would do.

L
o
g

 V
ar

ia
n

ce

Gradient

Log Sample Count

Hessians HVPs

UniformAggregate Optimal

103

101

105

102

106

103

1 20 1 20 1 20

Figure 11. Estimator variance (lines) for different operators

(plots).

K. Additional Experiments

We perform two additional experiments to show that our

method can successfully differentiate diverse light transport

scenarios: in Fig. 12 we have repeated the caustic example

from ZeroGrads [8], where the goal is to optimize a height-

field, parametrized by a 1,024-dimensional B-spline, such

that the caustic it creates matches a reference image. Our

method performs well on this task, even thought the loss

landscape is highly non-convex and the optimization vari-

ables exhibit highly non-local image-space interactions.

OursG OursHVPA ReferenceInitialization

Figure 12. Inverse optimization of a heightfield such that the caus-

tic it creates when light shines through it matches a reference.

CMA-ES does not converge on this task.

Initialization Ours ReferenceSetup

M
irror

M
irror

Figure 13. Two-bounce mirror optimization experiment.

Additionally, we optimize a two-bounce experiment, where

the rotation (around the up-axis) and translation (along x,y)

of the Stanford bunny are optimized, while the bunny is only

observed through two mirrors. The left subfigure in Fig. 13

shows the experiment. We use our method OursHVPA and

observe a successful optimization outcome.

Method Parameter QUAD BOX2 BOX10 MUG SHAD BUNNY TEXTURE CNN CNN5

Samples 4 6 6 1 1 2 4 1 1

Sigma (start) 1 1.5 0.6 3 0.5 1 0.5 0.5 0.5

FR22 Learning rate 0.5 0.3 0.05 0.1 0.02 0.02 0.05 1e-4 1e-4

Sigma (end) 0.01 0.01 0.1 0.01 0.01 0.01 0.1 0.01 0.01

OurG Learning rate 0.5 0.3 0.05 0.1 0.02 0.02 0.05 1e-4 1e-4

Sigma (end) 0.01 0.01 0.1 0.01 0.01 0.01 0.1 0.01 0.01

OurH Trust region 50 2 10 3 3 2 10 1e-2 1e-2

Sigma (end) 0.01 0.01 0.1 0.01 0.01 0.005 0.1 0.01 0.01

Line search iteration 5 10 3 1 1 1 5 2 2

Line search tolerance 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3

Recompute 5 10 30 10 10 5 30 20 20

OurHVP Trust region 50 2 10 4 5 4 10 1e-2 1e-2

Sigma (end) 0.05 0.01 0.1 0.01 0.01 0.01 0.1 0.01 0.01

Line search iteration 5 3 3 2 1 1 5 2 2

Line search tolerance 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3

Recompute 5 10 30 2 5 10 30 20 20

OurHVPA Trust region 50 2 10 4 3 4 10 1e-2 1e-2

Sigma (end) 0.05 0.01 0.1 0.01 0.01 0.01 0.1 0.01 0.01

Line search iteration 5 1 0 3 1 10 2 5 2 2

Line search tolerance 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3

Recompute 5 10 30 5 5 2 30 20 20

Table 3. Hyperparameters for our methods (rows) on the different tasks (columns). All parameters, including those of our competitors,

have been optimally chosen.

L. Hyperparameters

In this section, we detail the hyperparameters of our ex-

periments and show the initial-, output- and ground-truth

images for each task. The hyperparameters are shown in

Tab. 3, and the task images are shown in Fig. 9. The sam-

ple size, which is always antithetic and doubles the sample

size, applies to our methods and FR22. All Sigma anneal-

ing, which controls the bandwidth σ of the distribution [7],

is scheduled linearly and has a start and end value. For first-

order methods, the tunable hyperparameter is the learning

rate. For second-order ones, the trust region value shows

the initial search bound, and recompute is the number of

iterations until the line search is re-estimated.

	Gradient derivation
	Smooth Gradient Marginalization
	Hessian derivation
	Sampling diagonal of Hessian
	Grey-box differentials
	BFGS/LBFGS method
	Comparing to analytical Hessians
	Positive-Definite Hessians
	Robustness analysis
	How much variance is reduced?
	Additional Experiments
	Hyperparameters

