
Stochastic Gradient Estimation for Higher-order Differentiable Rendering

Zican Wang

University College London

robert.wang.19@ucl.ac.uk

Michael Fischer

Adobe Research

mifischer@adobe.com

Tobias Ritschel

University College London

t.ritschel@ucl.ac.uk

Abstract

We derive methods to compute higher-order differentials

(Hessians and Hessian-vector products) of the rendering

operator. Our approach is based on importance sampling of

a convolution that represents the differentials of rendering

parameters and shows to be applicable to both rasterization

and path tracing. We further suggest an aggregate sam-

pling strategy to importance-sample multiple dimensions

of one convolution kernel simultaneously. We demonstrate

that this information improves convergence when used in

higher-order optimizers such as Newton or Conjugate Gra-

dient relative to a gradient descent baseline in several in-

verse rendering tasks.

1. Introduction

Inverse rendering is concerned with optimizing the parame-

ters of a scene to minimize a loss. This can be a useful tool

when the true parameters of the scene are unknown or non-

trivial to set for a human expert, and therefore need to be

inferred from observations or measurements. Examples for

such scenarios are multi-view reconstruction [18] or the re-

covery of illumination and reflectance properties [38]. Dif-

ferentiable rendering has recently become a popular tool for

this optimization, as automatic differentiation (AD) frame-

works have become more widespread.

However, differentiating the rendering process is far

from trivial, as the rendering function [12] has zero and/or

undefined gradients and step edges. Moreover, as many ren-

dering operations rely on integration, discontinuities in the

rendering pipeline cause problems for AD-engines, as we

can no longer naı̈vely exchange the integral- and derivative-

computations. Recent research therefore has designed a

plethora of differentiable renderers [16], which compute

gradients in various ways, typically incurring more [15, 20]

or less [5, 7, 8] implementation and compute effort.

A surprising insight is that, while these special render-

ers allow deriving gradients w.r.t. the scene parameters by

differentiating (and back-propagating through) the render-

ing operator, virtually all of them are limited to first-order

Gradients (Previous) Hessians (Ours)

Figure 1. Our approach allows sampling the Hessian for inverse

rendering, here for the task of rotating the cup around its horizontal

(x0) and vertical axes (x1). The estimated positive and negative

gradients are shown in blue and red, respectively.

derivatives, and hence to expressing the gradient solely lo-

cally at a point in the parameter space. At the time of

writing, no attempts to derive the Hessians required for

higher-order inverse rendering methods have been pub-

lished. However, decades of optimization research have

shown the potential of higher-order methods in convergence

and robustness [22].

In this paper, we argue that these benefits are also ap-

plicable to inverse rendering scenarios and show that they

translate to net-gains in optimization time and performance

in differentiable rendering. We tackle the Achilles’ heel

of higher-order optimizers – their increased per-iteration

cost and computational / storage requirements – by de-

veloping efficient Monte Carlo (MC) estimators of the

required higher-order quantities that can be importance-

sampled with established techniques [23].

Our method leads to speedups of 2.71× over previous

methods, and net-gains in optimization time, speed and ro-

bustness while only assuming the rendering operator to be

a black box that can be point-sampled.

2. Previous Work

Gradient-based Optimization, the main workhorse of

modern neural network training and inverse rendering, uses

the gradient of the objective function to take iterative steps

in the parameter space towards an improved solution until a

(local) minimum is found. The exact nature of these steps

varies with the optimizer that is being used [27].



First-order optimizers are simple to implement and

cheap to execute but disregard important higher-order infor-

mation about the shape of the objective function that could

aid optimization, such as the second-order derivative. This

usually comes at the expense of higher iteration counts, as

many small steps are needed to converge to the solution.

In contrast, higher-order optimizers incorporate information

about the shape of the objective function, which usually al-

lows them to take bigger steps in parameter space, leading

to fewer iterations until convergence.

For the specific case of second-order optimization, this

additional information is often provided via the Hessian H

(or approximations thereof) and the Hessian-vector prod-

uct (HVP). The Hessian contains the second-order deriva-

tives of the objective function w.r.t. the optimization param-

eters, and can be interpreted as the curvature of the objective

function. As such, it can be used to inform the optimizer

about how quickly the current gradient is changing and thus,

in turn, about how large the optimization step should be.

Notation The following will use lowercase boldface to

denote vectors and uppercase sans to denote matrices, re-

spectively. Operators, formally defined as functions acting

on functions, will be denoted in uppercase Roman lettering

in order to avoid confusion with regular functions.

Gradient descent should be familiar to most readers, so

we here recall only its terminology: The first-order Taylor

expansion of the cost function f at position θ is

f(θ) ≈ f(θt) + g(θt)T(θ − θ
t),

where g is the gradient ∇f = df/dθ of f . The minimum

is where the derivative is zero, which we can solve for as

d

dθ
f(θ) = 0 ≈ g(θt). (1)

As f is a linear function only locally, we only make small

steps with step size γ, by an update direction −g(θt), as in

θ
t+1 = θ

t − γg(θt).

Newton’s method is one of the most-used second-order

optimizers. This term is derived from the second-order Tay-

lor expansion of the objective f around a point θ:

f(θ) ≈ f(θt)+g(θt)T(θ−θ
t)+

1

2
(θ−θ

t)TH(θt)(θ−θ
t),

where H is ∇2f = d2f/d2θ, the Hessian of f .

Ideally, we would like our update step to take us to an

optimum. There, the derivative is necessarily zero:

d

dθ
f(θ) = 0 ≈ g(θt) + H(θt)(θ − θ

t). (2)

Solving for θ then yields the update rule

θ
t+1 = θ

t − γH−1(θt)g(θt), (3)

where v = −H
−1(θt)g(θt) is called the Newton direction.

Newton’s method requires the computation, storage, and

inversion of the full Hessian, which quickly becomes a

bottleneck in higher dimensions, as the Hessian for an n-

dimensional optimization problem is in R
n×n.

Newton Conjugate Gradient [31], upgrades Newton’s

method in two ways. First, it solves for Newton’s direc-

tion iteratively as per the linear equation H(θ)v = −g(θ)
using conjugate directions [31]. Second, instead of an arbi-

trary step length γ, it also decides the scalar α by which we

move along this direction v. To derive α, first consider the

Taylor expansion:

d

dα
f(θ + αv) ≈ g(θ)Tv + αvT

H(θ)v = 0 (4)

which can be re-arranged to

α = −
gT(θ)v

vTH(θ)v
. (5)

The update rule for the Newton Conjugate Gradient is more

involved: First, we maintain the direction v and a residual

r, which are initialized to be the gradient at the initial posi-

tions:

v
0 = r

0 = −g(θt) (6)

We then find the α by equation Eq. 5 and update the point:

θ
t+1 = θ

t + αvt. (7)

The next direction is chosen by updating the residual r

and computing a new conjugate search direction v with the

Fletcher-Reeves formula [9]:

r
t+1 = r

t − αH(θt)vt

β =
r
t+1,T

r
t+1

rt,Trt

v
t+1 = r

t+1 + βvt.

Since Newton’s method is derived via second-order Tay-

lor expansion (approximated by a hyper-parabola), the de-

rived Hessian may lead to either a maximum or a min-

imum depending on the local curvature of the function

being approximated. This is determined by the positive-

definiteness of the Hessian, and a negative-definite Hes-

sian will diverge from the gradient’s descent direction. To

avoid this, one can ensure that the Hessian is always posi-

tive semi-definite using the Hessian modification technique

and ensure step truncation to a trust region [22], α =
min(α,∆∥v∥−1), where ∆ is the trust region radius (see

Supplemental Sec. H).



Hessian-vector product approximations go one step

further by entirely avoiding to compute H when producing

Hv. Pearlmutter [24] and Werbos [35] discuss different op-

tions to do so, but a simple option is central differences

H(θ)v ≈ lim
ε→0

g(θ + εv)− g(θ − εv)

2ε
. (8)

Hessians in vision and graphics have been applied to

several optimization tasks, for instance, for total-variation

denoising [3], texture parameterization and surface map-

pings with approximated Hessians [28], 3D shape manip-

ulation [13], and image deconvolution tasks via (Hessian-

free) Newton methods [14]. For optical flow estimation,

both Zach et al. [39] and Werlberger et al. [36] use second-

order information. Additionally, several works have ex-

plored Hessian-based algorithms in machine learning for

vision tasks. Yao et al. [37] introduces a Hessian-based

pruning method for CNNs for image classification, while

Ramesh et al. [26] utilizes Hessians to improve the training

of image generation models and Desai et al. [6] introduces

an algorithm that derives Hessians for C code.

Hessians in inverse rendering, however, have received

surprisingly little attention, potentially due to their addi-

tional implementation overhead and computational com-

plexity. In addition to the fact that conventional AD systems

are mostly designed for first-order gradient computations,

calculating the second-order information requires storing

the whole forward- and first-derivative–graph in memory,

which can lead to exponential memory growth. Nicolet

et al. [19] are the closest to our work by approximating

second-order steps for mesh reconstruction. However, they

set the Hessian to the identity to avoid computational ex-

pense and instead work with a Laplacian regularizer, which

works for their formulation and the case of mesh optimiza-

tion, but is unclear how to translate to general problems.

For derivative-free gradient estimators, it is equally

unclear how second-order information would be com-

puted. The zeroth-order estimators simultaneous perturba-

tion stochastic approximation (SPSA) [32] and finite differ-

ences (FD) estimate a first-order gradient, whose second-

order derivative naturally is zero. Extending these es-

timators to second-order information requires prohibitive

amounts of function evaluations. ZeroGrads [8], which

learns a neural network that fits the cost landscape,

uses ReLU non-linearities, whose second-order derivative

equally decays to zero. Covariance adaptation evolution

strategy (CMA-ES) is often used when typical second-

order optimization fails to converge [10]. It ensures that

the Hessian is always positive definite, but if second-order

derivative-based methods are successful, they are usually

faster than CMA-ES.

3. Our approach

We first describe the computation of gradients using impor-

tance sampling of a combined gradient-smoothing operator

from previous work [4, 7] which we then extend to Hes-

sians, and in a next step to Hessian-vector products.

3.1. Background

Rendering equation The rendering equation (RE) [12]

describes the radiance L leaving a point x in the scene into

the direction ωo as

L(x, ωo;θ) =

∫

Ω

fr(ωi, ωo)L(y, ωi;θ)
︸ ︷︷ ︸

R(ωi;θ)

dωi, (9)

where θ are the parameters of the scene we would like to op-

timize, such as object geometry, reflectance, or light emis-

sion. This integral over Ω, i.e., all incoming ωi directions

that multiply the radiance field arriving from that direction

from the closest other point y in direction ωi with the bi-

directional reflectance distribution function (BRDF) fr, has

no analytical closed-form solution, and hence usually is ap-

proximated – both in forward and inverse rendering – via

MC methods. We will shorthand the entire integrand as R.

Problem statement We would now like to apply a differ-

ential operator D to the RE, as in

DL(x, ωi;θ). (10)

If D was the gradient operator ∂L/∂θ, this would be differ-

entiable rendering, for other operators, this becomes higher-

order differentiable rendering.

The trouble is that we cannot move D, be it gradient or

higher-order, into the integral, as in many cases (e.g., for

BRDF or spatial derivatives), the integrand is discontinuous

in θ, so

DL(x, ωi;θ) ̸=

∫

Ω

DR(ωi;θ)dωi. (11)

However, the right-hand side of the above expression is

exactly the quantity that naı̈vely-applied AD computes

[21, 34], leading to wrong gradients in (any-order) differ-

entiable rendering.

Solution The idea is to enforce the property that prevents

differentiation – smoothness –, so that we actually can dif-

ferentiate. To that end, assume a further linear operator S
that is smoothing any function in θ. This provides a smooth

rendering equation L̄

L̄(x, ωo;θ) =

∫

Ω

SR(ωi;θ)dωi. (12)



∇

∇

H

θ θH θ∇ θ∇

Source

Target

Figure 2. Comparison of classic (yellow) and smooth (red) gradients, as well as our Hessians (blue) on an inverse rendering problem to

change the initial parameter θ so that the left triangle overlaps the right one. Classic gradients are zero almost everywhere (plateaus) except

where the triangles already overlap. These methods do not converge. Smooth gradients point into the right direction, but make steps far

from the optimum (dotted line). An update taking into account the curvature of the loss landscape lands at a point very close to the target.

We incorporate this curvature information via our Hessians.

Smoothing can be achieved by convolution, so for any

function f in any dimension

S f(θ) =

∫

Θ

κ(τ )f(θ − τ )dτ , (13)

where κ is a smoothing kernel, such as a Gaussian, which

we use in this work. This convolved integrand is now

smooth, which, according to Leibniz’ rule, allows us to

move the differential operator into the integral

D L̄(x, ωo;θ) =

∫

Ω

DSR(ωi;θ)dωi, (14)

which, after rearranging and expanding, yields an inte-

gral that can be approximated via MC:

D L̄(x, ωo;θ) =

∫

Ω

∫

Θ

Dκ(τ )R(ωi;θ − τ )dτdωi. (15)

MC here means to take random samples from the prod-

uct space of light paths and scene parameters. This works

best if we can importance-sample for the integrand. The in-

tegrand here is a product of four terms. Sampling for the

incoming radiance and BRDF terms has been investigated

in the rendering community [33] and is not our considera-

tion here, so we simply adopt these strategies. Sampling for

the application of the differential operator to the smoothing

kernel is the essence of the problem at hand. Depending

on the choice of differential operator, we will derive three

sampling strategies for the three resulting estimators next.

Conclusion In conclusion, to perform efficient and prac-

tical any-order differentiation of the RE, we would need

to implement two functions: first, a convolution kernel

that combines smoothing and the desired differentiation,

and second, a function to sample from that kernel for im-

portance sampling. We will now do so for the gradient

(Sec. 3.2), Hessian (Sec. 3.3) and HVP (Sec. 3.4).

3.2. Gradients

Operator: For first-order gradient descent, Fischer and

Ritschel [7] have differentiated using the gradient operator

DG = ∇ = ∂/∂τi ∈ (Rn → R) → (Rn → R
n), (16)

G
ra

d
ie

n
t

H
es

si
an

Differential Positivized CDF Sampling

H
V

P

Figure 3. Derivation of smooth differentiation by convolution for

three differential operators (rows) involves three steps (columns):

Defining the operator to combine smoothing and differentiation

(1st col.), positivization and normalization to become a probability

density function (PDF) (2nd col.), creating an inverse mapping

(3rd col.), which finally allows sampling (4th col.).

which maps a scalar function of n dimensions to an n-

dimensional gradient vector field.

The combination of smoothing and differentiation is

DG κ(τ ) = ∇iN (τ , σ) = −
τi
σ2

· N (τ , σ). (17)

For a derivation, please see the supplemental, Sec. A.

Sampling: For sampling a one-dimensional Gaussian

gradient, we can use inverse transform sampling via the

Smirnov transform [7]. To this end, the integrand has to be a

PDF, i.e., positive and integrating-to-1 [23]. Subsequently,

we compute the integral of a positivized version of pG, the

cumulative distribution function (CDF) PG, and invert it as

PG,−1(ξ) =

{

−
√

2σ2 log(2ξ) if ξ ≤ 0.5,

+
√

2σ2 log(1− ξ) else.
(18)

This derivation applies to the dimension which is being dif-

ferentiated. The separability of multi-dimensional Gaus-

sians ensures that the other dimensions remain a Gaussian

distribution, and we can sample these dimensions indepen-

dently. For a derivation of this, see Suppl. Sec. B.



3.3. Hessians

Operator: The differential operator for Hessians is

DH = ∇2 = ∂2/∂τi∂τj ∈ (Rn → R) → (Rn → R
n×n),

(19)

which maps a scalar function in n dimensions to its n× n-

element Hessian field. The combination of second-order

derivatives and Gaussian smoothing is

DH κi,j(τ ) =







(

−
1

σ2
+

τ2i
σ4

)

· N (τ , σ) if i = j,

τiτj
σ4

· N (τ , σ) else.

(20)

For a derivation, see supplemental Sec. C.

Sampling: We first need to positivize as the function is

signed, then scale the function so that it is a valid distribu-

tion. This is done differently for diagonal and off-diagonal

elements. For the diagonal case, we construct the CDF of a

second-order derivative PH
ii of the 2D Gaussian:

PH
ii (τi = u) =







−
u

4σ
exp

(
1

2
−

u2

2σ2

)

if u < −σ,

0.5 +
u

4σ
exp

(
1

2
−

u2

2σ2

)

if u ∈ [−σ, σ]

1−
u

4σ
exp

(
1

2
−

u2

2σ2

)

if u > σ.

(21)

See supplemental Sec. D for a derivation of this result. This

is a transcendental equation whose inverse CDF cannot be

expressed in closed form via elementary functions [2]. In-

stead, we 1D-tabulate its values on the range 10σ for every

i. The inverse function is found by searching in that range,

and storing the pre-sorted inverse indices for O(1) access.

The off-diagonals are the product of two partial gradients

that we have already derived in Eq. 17. Fortunately, the

product of two independent distributions can be sampled by

sampling each one independently. Thus, no extra derivation

is required here. For sampling in higher dimensions, similar

to the gradient sampler in Sec. B, the rest of the dimensions

are sampled from a Gaussian distribution.

In all methods, we exploit the symmetry in the Hessian

matrix when sampling and estimating.

3.4. Hessian­vector product

Operator: As explained in Sec. 2, avoiding to store the

full Hessian is possible by using HVPs:

DHVP = ∇2
v = ∂2/∂τi∂τ · ∂/∂τ . (22)

In essence, a HVP is the directional gradient of the gradient.

As there is one direction and the gradient has n dimensions,

the HVP is an n-dimensional vector, too. In contrast, a Hes-

sian is the non-directional gradient of the gradient, i.e., the

gradient along all n dimensions, and as such in R
n×n.

Sampling: To sample the smooth HVP, we simply need

the directional central differences of an estimator of gradi-

ents, which we already have. So the estimator is the dif-

ference of two first-order estimators, evaluated at positions

shifted from the current solution along the gradient direc-

tion [24, 35]:

DHVP κ(τ ) =
DG κ(τ − εv)−DG κ(τ + εv)

2ε
. (23)

3.5. Aggregate

We summarize the key property of all samplers –

the number of function evaluations required – in

Tab. 1. Function evaluations require execution of

the black-box rendering engine, the most costly part

of the optimization, and hence should be minimized.

Table 1. Time complexity of dif-

ferent estimator variants. AIS:

aggregated importance sampling.

no IS IS AIS

Fin. Diff. n n n

FR22 [7] 1 1 1

Our Grad. 1 n 1
Our Hess. 1 n

2 1
Our HVP 1 n 1

Classic finite differ-

ences take opposing

samples in each di-

mension and hence,

for an n-dimensional

problem, require 2n
function evaluations for

a single gradient sam-

ple. All other methods

(second row in Tab. 1

onward) are based on

MC, so we can get a

gradient estimate using

a fixed number of M function evaluations. This, however,

comes at the cost of variance, which can be reduced with

importance sampling, but that is done in all dimensions

of the differential quantity independently, so it requires as

many evaluations as these have elements (second column

in Tab. 1). For a Hessian, this can be substantial, n2.

As a compromise between low number of function eval-

uations and low variance, we propose “aggregate” impor-

tance sampling of the differential quantity (Fig. 4): instead

of importance-sampling each dimension optimally but in-

dividually, we importance-sample w.r.t. the average of the

convolution across all dimensions (combining several pro-

posals by sampling from a mixture is similar to MIS us-

ing the balance heuristic [33]). This average convolution is

a single function again, and with our combined sampling

strategy can again be sampled with one function call per it-

eration (last column of Tab. 1). We implement this in two

simple steps: first we randomly decide which element of

the differential representation to choose (e.g., which matrix

element out of n2 in the Hessian), and then we compute the

convolution sample for all n2 but with the same function

value that is only evaluated once. This increases variance,

as the average kernel is not identical to the individual ker-

nels but shares many properties, e.g., they are all zero in

value at position 0. As a linear combination of unbiased es-



N
o
n
-a

g
g
.

Sample at ... Convolve with ...

A
g
g

re
g
at

e

Figure 4. Aggregate and non-aggregate sampling for a 2D op-

timization space and, consequentially, a 2 × 2 Hessian: With-

out aggregation, importance sampling is done for each element

of the Hessian independently (four points at different positions

in each kernel), leading to four rendering calls and four different

mugs. Each value is then weighted by the kernel (blue and red

colors denote positive and negative). In aggregate sampling, we

importance-sample the average of all four stencils, resulting in a

single sample location and, hence, four times the same mug that

can be rendered in one call, weighted with four different kernels.

timators, this is still unbiased. We show in Sec. J that this

pays off. Note that Tab. 1 is both time and space complexity,

except for the aggregate importance sampling of the HVP,

where the space complexity stays O(n) while time com-

plexity is reduced to O(1).

4. Evaluation

4.1. Methods

Our evaluation compares the performance of gradients (in-

put to gradient descent), Hessians and non-aggregate as well

as aggregate Hessian-vector product (both input to higher-

order optimizers).

Baselines An established inverse rendering solution is

Mitsuba with gradient descent. FR22 is using gradi-

ent descent with Fischer and Ritschel [7] MC gradients.

OursG, OursH, OursHVP and OursHVPA are our ap-

proach for gradient, Hessians and Hessian-vector products,

and aggregates, respectively. OursG is used with gradi-

ent descent (GD), the others in combination with conjugate

gradient (CG). We have also experimented with LBFGS as

detailed in the supplemental, but do not report it here as it

almost never converges and never at competitive speed. All

methods use the Adam optimizer.

Tasks We tackle artificial problems with known analytic

Hessians and Hessian-vector products as well as real inverse

rendering tasks. As a simple first test case, we optimize the

smooth, quadratic potential(QUAD
1) function ax2

0 + bx2
1 +

cx0x1 in R
2, with the fixed variables a = 5, b = 5, c = 7.5.

Second, we optimize the classic plateau-demonstration

task from [7]: the 2D position of some boxes is optimized

to match a reference. This is already a much harder task, as

there is a plateau in the cost landscape when the squares do

not overlap (almost always the case in the initial configura-

tion), as the image-space error does not change. We study

the case of one (BOX23) and five (BOX105) squares, with

two and ten dimensions to optimize, respectively.

For real inverse problems, we study the optimization of

reflectance, light, and geometry and render using Mitsuba.

In the MUG
7 task, we optimize the vertical rotation of a cof-

fee cup such that it matches a reference. In the SHADOW
9

task, we optimize the position of a sphere that is unobserved

in the rendered image, such that the shadow it casts matches

a reference shadow. In the BUNNY
11 task, the x and z posi-

tion and the rotation around the z axis of the Stanford bunny

are optimized. This task is set up specifically for Mitsuba

to converge12, with no plateaus in the loss function.

To test the scaling with dimensionality, we also optimize

the pixels of a 32×32 texture (TEXTURE
13), with 1024 pa-

rameters. In addition, we have used our approach on a mesh

optimization task, where we fit the 3D position of the ver-

tices of a tessellated sphere to images of a target object. For

SUZANNE, we fit 2,562 vertices, for BANANA, we fit the

2,737 vertices and their RGB vertex colors, similar to the

DTU setup [11]. For trajectories of the optimization and

the outcome, see Fig. 5 top and bottom rows, respectively.

Finally, we learn a CNN15 to predict scene parameters

from images using inverse rendering without scene param-

eter labels. In this case, the optimization is learning in the

stricter sense: we tune parameters of a deep architecture in-

stead of scene parameters directly. The CNN takes as input

an image of a mug and produces as output the orientation

for a mug. As a loss, these parameters are inserted into

a renderer, differentiated by different approaches and com-

pared to a target. The CNN has 267 745 parameters, learned

by differentiating through an image loss and rendering of

the scene given the estimated parameters. Another CNN

(CNN519) is trained to predict the rotation, position, and

color of the mug with 268 773 parameters.

Differentials of this function are computed as detailed

in supplemental Sec. E, where we derive a grey-box ap-

proach that samples only the black-box part (the rendering)

and combines its differentials with analytic differentials for

the white-box part (the CNN). Importantly, this idea works

for gradients, as well as for higher-order differentials.

Metrics Our main measure of success is convergence

speed in wall-clock and parameter difference to the true pa-

rameters (which we know in all inverse rendering tasks as

we created the scenes). A secondary measure of success is

the image difference, as during optimization, we consider

the parameters hidden. All metrics are evaluated across an

ensemble of 20 runs averaged across 10 steps in time. In

convergence plots, the ensemble median is shown at every

point in time, averaged across 20 time steps.



Table 2. Quantitative results of different methods on different tasks (rows) and their convergence plots. We report convergence time in

wall-clock units, in ratio to the overall best method, OurHVPA. In the numerical columns, .9 and .99 report the time taken to achieve 90
and 99% error reduction from the initial starting configuration, respectively, while the bar plots graphically show these findings. The line

plots report image- and parameter-space convergence in the left and right column, respectively, on a log-log scale.

Task Method Image error Parameter error

E
rr

o
r

E
rr

o
r

E
rr

o
r

E
rr

o
r

L
o
g
 e

rr
o
r

L
o
g
 e

rr
o
r

L
o
g
 e

rr
o
r

L
o
g
 e

rr
o
r

E
rr

o
r

E
rr

o
r

E
rr

o
r

E
rr

o
r

E
rr

o
r

L
o
g
 e

rr
o
r

L
o
g
 e

rr
o
r

L
o
g
 e

rr
o
r

L
o
g
 e

rr
o
r

L
o
g
 e

rr
o
r

Mitsuba FR22 OurG OurH OurHVP OurHVPACMA-ES

Log time Log time.9 .99 .999 .9 .99 .999

.9 .99 .999 .9 .99 .999

QUAD
1 Mitsu — 2 — — — — —

FR22 1.80 2.38 2.98 2.20 3.17 3.90

CMA-ES 0.15 0.13 0.14 0.13 0.14 0.23

OurG 3.98 5.13 6.02 4.72 6.42 7.77

OurH 1.17 1.17 1.15 1.18 1.16 1.17

OurHVP 0.76 0.62 0.62 0.63 0.59 0.60

OurHVPA 1.00 1.00 1.00 1.00 1.00 1.00

BOX23 Mitsu — — — — — —

FR22 3.24 2.49 2.57 2.78 2.89 2.70

CMA-ES 5.51 3.45 3.15 8.13 5.51 4.13

OurG 2.88 2.16 2.21 2.86 2.65 2.38

OurH 0.93 0.95 1.08 0.76 0.84 1.84

OurHVP 0.81 0.64 0.70 4 0.74 0.72 0.72

OurHVPA 1.00 1.00 1.00 1.00 1.00 1.00

BOX105 Mitsu — — — — — —

FR22 1.49 1.20 1.71 1.80 1.54 1.29

CMA-ES 3.10 2.27 1.73 4.52 3.23 2.48

OurG 2.18 1.77 1.53 2.53 2.26 1.88

OurH 5.97 5.33 4.68 5.48 5.96 5.45

OurHVP 1.51 1.44 1.696 1.26 1.50 1.58

OurHVPA 1.00 1.00 1.00 1.00 1.00 1.00

MUG
7

Mitsu — — — — — —

FR22 5.92 5.69 5.46 3.28 6.53 6.29

CMA-ES 2.95 1.97 1.82 3.32 2.38 2.20

OurG 3.99 3.91 3.74 2.36 4.42 4.30

OurH 1.57 1.09 1.53 1.00 1.08 1.20

OurHVP 1.15 1.14 1.18 1.14 0.87 1.05

OurHVPA
8 1.00 1.00 1.00 1.00 1.00 1.00

SHAD
9 Mitsu — — — — — —

FR22 1.94 1.40 1.55 1.89 1.14 1.71

CMA-ES 1.96 1.15 1.03 4.38 2.20 1.66

OurG 1.37 1.18 1.13 2.38 1.47 1.34

OurH 1.67 1.44 1.66 2.32 1.74 1.46

OurHVP 1.14 0.91 0.96 1.37 1.13 1.07

OurHVPA 1.00 1.00 1.00 1.00 1.00 1.0010

BUNNY
11 Mitsu

12 0.90 1.29 1.46 1.87 1.38 1.28

FR22 0.75 0.75 1.12 0.78 0.63 0.71

CMA-ES 1.16 0.95 0.85 1.27 0.91 0.85

OurG 0.76 0.89 1.07 0.69 0.64 0.76

OurH 1.29 1.23 1.29 1.18 0.80 1.07

OurHVP 0.68 0.68 0.70 0.63 0.44 0.58

OurHVPA 1.00 1.00 1.00 1.00 1.00 1.00

TEXTURE
13 Mitsu — — — — — —

FR22 4.04 2.27 1.80 4.04 2.27 1.80

CMA-ES 7.08 4.60 4.35 11.16 7.47 7.44

OurG 3.03 2.86 2.82 3.03 2.86 2.82

OurH
14 40.12 39.78 — 40.12 39.78 —

OurHVP 4.01 4.00 4.00 4.01 4.00 4.00

OurHVPA 1.00 1.00 1.00 1.00 1.00 1.00

CNN15 Mitsu — — — — — —

FR22 2.1116 — — 1.45 1.32 2.71

CMA-ES — — — 2.08 — —

OurG 1.14 — — 0.96 0.83 2.28

OurH 0.77 0.77 — 0.74 0.77 0.74

OurHVP 0.87 0.9317 — 0.88 0.91 0.87

OurHVPA 1.00 1.00 — 18 1.00 1.00 1.00

CNN519 Mitsu — — — — — —

FR22 — — — — — —

CMA-ES — — — — — —

OurG 18.68 — — 3.70 — —

OurH 19.00 — — 5.79 — —

OurHVP 3.6420 1.46 — 1.49 1.58 —

OurHVPA 1.00 1.00 — 1.00 1.00 1.00



Gradients

Hessians

CMA-ES

Log timeL
o
g
 e

rr
o
r

Log time

L
o
g
 e

rr
o
r

Init Ours Target

Figure 5. Inverse mesh optimization from renderings. Gradients use FR22, Hessians use OursHVPA, CMA-ES uses the pycma package.

4.2. Results

The main results of our evaluation are summarize in Tab. 2

where empty cells did not converge or the method is not

applicable to that task. On average across tasks and meth-

ods, our premiere method oursHVPA speeds up the con-

vergence by a factor of 2.71.

In general, our methods, in particular OursHVP and

OursHVPA, lead the level of error reduction across all time

budgets, as seen by comparing the convergence curves ver-

tically where they consistently decrease fastest.

We benefit most in the artificial QUAD task, but MUG

and SHADOW are both real rendering problems, where we

are around seven times and 60 % faster, respectively. We see

that OurG typically cannot outperform FR22, which uses

an approximation of the correct high-dimensional gradient

kernel. Doing it “right” only pays off when going to higher

order. We also note that OursHVP outperforms OursH due

to less function evaluations (as the metric is wall-clock - the

iteration count for both is close). The log-log plots confirm

that the higher-order variants enabled by our approach are

much faster, but also converge slightly less stable.

While tasks like QUAD and BOX2 are not applicable

to inverse renderers like Mitsuba
2, our methods treat

any loss function as a black-box and retrieve derivatives

via sampling. Comparing the performance of OurHVP

and OurHVPA across a task with two and ten dimensions,

we find the expected relation: OurHVP is faster in low

dimensions4 than in higher dimensions for a similar task6.

We notice that the OurHVPA is not out-performing the

OurHVP and OurH in the MUG task8. This is because there

is a single scene parameter for this task, thus, the higher

order derivative is all in order of one. With a higher variance

for OurHVPA, it could be a little slower. The effect of using

the aggregate starts to show from SHAD, where OurHVPA

reaches the 1 : 1000 convergence the fastest10.

For all the rendering tasks, only the BUNNY task con-

verges for Mitsuba12. Since the other tasks have plateaus

in the loss function, the analytical gradient from inverse ren-

dering is effectively zero, so it would be hard to converge

within a reasonable time. The log-log plot shows in addi-

tion that derivatives from the inverse rendering were slower

than the sampled ones. On the contrary, our methods not

only smooth out the plateaus, but also improve the speed of

the derivative computation.

The drawback of constructing full Hessians is seen in

the TEXTURE task, where OurH is more than 40 times

slower than the HVP due to the matrix size14. For the

most demanding task, CNN and CNN5, and even our best

method18 is not able to reduce the error below 1 : 1000. At

the 1 : 1000-level, the more elaborate differentials17 is not

faster than the basic one, but faster than first-order16. Fi-

nally, the advantage of our ability to compute HVPs is seen

when comparing CNN and CNN5: while a CNN producing

a single parameter is doable with Hessians17, but if we go

to higher dimensions, the aggregate strategy pays off again

and is markedly faster20.

In conclusion, albeit convergence varies with problem

characteristics and dimensionality, we find that our best

method, OurHVPA converges most reliably, beating the

other algorithms by an average factor of 2.71× in wall-

clock units. We show examples of task initialization and

outcome, and additional evaluation in the supplemental.

5. Limitations and Conclusion

Limitations. From the above experiments, it becomes ap-

parent that our method performs well on lower-dimensional

examples, but that its performance delta lessens with in-

creasing problem dimensionality (see e.g. TEXTURE). We

hypothesize that this is due to sparser sampling in higher di-

mensions and exacerbated MC noise and acknowledge that

further research in this direction is needed. We include an

analysis on how our method degrades under MC rendering

noise in the supplemental.

Conclusion. The availability of second-order gradient in-

formation gives rise to an exciting avenue of future research

in inverse rendering. While these algorithms are not new,

their use in vision & graphics remains limited due to the

convenience and widespread adoption of first-order gradi-

ent descent and the increased per-iteration cost that is usu-

ally associated with higher-order methods. In this work, our

efficient estimators have shown the latter to be negligible in

real-world optimization scenarios. We hope that this will in-

spire future research into unbiased, low-variance estimators

of higher-order optimization methods.



References

[1] Albert S Berahas, Richard H Byrd, and Jorge Nocedal.

Derivative-free optimization of noisy functions via quasi-

newton methods. SIAM Journal on Optimization, 29(2):965–

993, 2019. 11

[2] John P Boyd. Solving transcendental equations: the Cheby-

shev polynomial proxy and other numerical rootfinders, per-

turbation series, and oracles. SIAM, 2014. 5

[3] Tony F Chan, Gene H Golub, and Pep Mulet. A nonlinear

primal-dual method for total variation-based image restora-

tion. SIAM Scient. Comput., 20(6):1964–1977, 1999. 3

[4] Swarat Chaudhuri and Armando Solar-Lezama. Smooth in-

terpretation. ACM Sigplan Notices, 45(6):279–291, 2010. 3

[5] Thomas Deliot, Eric Heitz, and Laurent Belcour. Transform-

ing a non-differentiable rasterizer into a differentiable one

with stochastic gradient estimation. In ACM i3D, 2024. 1

[6] Deshana Desai, Etai Shuchatowitz, Zhongshi Jiang, Teseo

Schneider, and Daniele Panozzo. Acorns: An easy-to-use

code generator for gradients and hessians. SoftwareX, 17:

100901, 2022. 3

[7] Michael Fischer and Tobias Ritschel. Plateau-reduced differ-

entiable path tracing. In CVPR, pages 4285–4294, 2023. 1,

3, 4, 5, 6, 10, 14

[8] Michael Fischer and Tobias Ritschel. Zerograds: Learning

local surrogates for non-differentiable graphics. ACM Trans.

Graph. (Proc. SIGGRAPH), 43(4):1–15, 2024. 1, 3, 13

[9] Roger Fletcher and Michael JD Powell. A rapidly convergent

descent method for minimization. The computer journal, 6

(2):163–168, 1963. 2

[10] Nikolaus Hansen and Andreas Ostermeier. Adapting arbi-

trary normal mutation distributions in evolution strategies:

The covariance matrix adaptation. In Proc. IEEE Evolution-

ary Computation, pages 312–317, 1996. 3

[11] Rasmus Jensen, Anders Dahl, George Vogiatzis, Engil Tola,

and Henrik Aanæs. Large scale multi-view stereopsis evalu-

ation. In CVPR, pages 406–413, 2014. 6

[12] James T Kajiya. The rendering equation. In Proc. SIG-

GRAPH, 1986. 1, 3

[13] Martin Kilian, Niloy J Mitra, and Helmut Pottmann. Geo-

metric modeling in shape space. In SIGGRAPH, pages 64–

es, 2007. 3

[14] Dilip Krishnan and Rob Fergus. Fast image deconvolution

using hyper-Laplacian priors. Proc. NeurIPS, 22, 2009. 3

[15] Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft ras-

terizer: A differentiable renderer for image-based 3d reason-

ing. In Proc. ICCV, 2019. 1

[16] Matthew M Loper and Michael J Black. OpenDR: An ap-

proximate differentiable renderer. In Proc. ECCV, 2014. 1

[17] James Martens. New insights and perspectives on the natural

gradient method. J Machine Learning Res, 21(146):1–76,

2020. 11

[18] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,

Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:

Representing scenes as neural radiance fields for view syn-

thesis. Comm ACM, 65(1), 2021. 1

[19] Baptiste Nicolet, Alec Jacobson, and Wenzel Jakob. Large

steps in inverse rendering of geometry. ACM Trans. Graph.

(Proc. SIGGRAPH Asis), 40(6):1–13, 2021. 3

[20] Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wen-

zel Jakob. Mitsuba 2: A retargetable forward and inverse

renderer. ACM Trans. Graph., 38(6), 2019. 1

[21] Merlin Nimier-David, Sébastien Speierer, Benoı̂t Ruiz, and

Wenzel Jakob. Radiative backpropagation: an adjoint

method for lightning-fast differentiable rendering. ACM

Trans Graph, 39(4), 2020. 3

[22] Jorge Nocedal and Stephen J Wright. Numerical optimiza-

tion. Springer, 1999. 1, 2, 11

[23] Art Owen and Yi Zhou. Safe and effective importance sam-

pling. J American Statistical Assoc., 95(449), 2000. 1, 4

[24] Barak A Pearlmutter. Fast exact multiplication by the hes-

sian. Neural computation, 6(1):147–160, 1994. 3, 5

[25] Michael JD Powell. Algorithms for nonlinear constraints that

use lagrangian functions. Math. Prog., 14:224–248, 1978. 11

[26] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,

and Mark Chen. Hierarchical text-conditional image gener-

ation with clip latents. arXiv:2204.06125, 1(2):3, 2022. 3

[27] Sebastian Ruder. An overview of gradient descent optimiza-

tion algorithms. arXiv:1609.04747, 2016. 1

[28] Pedro V Sander, John Snyder, Steven J Gortler, and Hugues

Hoppe. Texture mapping progressive meshes. In Proc. SIG-

GRAPH, pages 409–416, 2001. 3

[29] David F Shanno. Conditioning of quasi-newton methods

for function minimization. Mathematics of computation, 24

(111):647–656, 1970. 11

[30] Jack Sherman. Adjustment of an inverse matrix correspond-

ing to changes in the elements of a given column or row of

the original matrix. Annu. Math. Statist., 20:621, 1949. 11

[31] Jonathan Richard Shewchuk. An introduction to the conju-

gate gradient method without the agonizing pain. 1994. 2

[32] James C Spall. Multivariate stochastic approximation using

a simultaneous perturbation gradient approximation. IEEE

Trans Automatic Control, 37(3):332–341, 1992. 3

[33] Eric Veach and Leonidas J Guibas. Optimally combining

sampling techniques for Monte Carlo rendering. In Proc.

SIGGRAPH, pages 419–428, 1995. 4, 5

[34] Delio Vicini, Sébastien Speierer, and Wenzel Jakob. Path re-

play backpropagation: differentiating light paths using con-

stant memory and linear time. ACM Trans Graph, 40(4),

2021. 3

[35] Werbos. Backpropagation: Past and future. In IEEE 1988

Int Conf Neural Networks, pages 343–353. IEEE, 1988. 3, 5

[36] Manuel Werlberger, Werner Trobin, Thomas Pock, Andreas

Wedel, Daniel Cremers, and Horst Bischof. Anisotropic

huber-l1 optical flow. In BMVC, volume 1, 2009. 3

[37] Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa,

Kurt Keutzer, and Michael Mahoney. Adahessian: An adap-

tive second order optimizer for machine learning. In Proc.

AAAI, volume 35, pages 10665–10673, 2021. 3

[38] Yizhou Yu, Paul Debevec, Jitendra Malik, and Tim Hawkins.

Inverse global illumination: Recovering reflectance models

of real scenes from photographs. In Proc. SIGGRAPH, pages

215–224, 1999. 1

[39] Christopher Zach, Thomas Pock, and Horst Bischof. A du-

ality based approach for realtime TV-L1 optical flow. In

DAGM Pattern Recognition, pages 214–223, 2007. 3


	Introduction
	Previous Work
	Our approach
	Background
	Gradients
	Hessians
	Hessian-vector product
	Aggregate

	Evaluation
	Methods
	Results

	Limitations and Conclusion

