
A. Gradient derivation
The i-th element of the gradient of the Gaussian, is

∇iN (τ ) =
∂iN (τ )

∂τi
(24)

=
dN (τi)

dτi

n∏
j=1
j ̸=i

N (τj) (25)

= − τi
σ2

N (τi)

n∏
j=1
j ̸=i

N (τj) (26)

= − τi
σ2

N (τ ), (27)

where we use the overloaded convention that N (τ ) takes a
vector τ and N (τi) the i-th element, a scalar τi, to produce
the one or n-dimensional Gaussian.

This differs from Fischer and Ritschel [7] who only blur
in the direction in which they differentiate, as in

∇iN (τi) =
τi
σ2

N (τi), (28)

while it is more consistent with higher-order differentials to
blur all dimensions.

B. Smooth Gradient Marginalization
The sampling of 1D Gaussian gradient was derived by

Fischer and Ritschel [7] who constructed a PDF pG. For
a n-dimensional Gaussian gradient, we need to marginalize
and sample the dimensions individually. Marginalization
would be integration over all dimensions j ̸= i, except the
one we look for i, so:∫

τj ̸=i

pG(τ )dτj ̸=i. (29)

Writing out the CDF, a positivized and scaled version of the
PDF p, where 1/Z is the partition function, gives

1

Z

∫
τj ̸=i

1

2
|∇iN (τ )|dτj ̸=i = (30)

1

Z

∫
τj ̸=i

|∇iN (τ )|dτj ̸=i. (31)

Writing the n-D Gaussian as product of n 1D Gaussians

1

Z

∫
τj ̸=i

|∇i

N∏
j=1

N (τj)|dτj ̸=i. (32)

As we differentiate only by τi, all other factors are 1, so

1

Z

∫
τj ̸=i

|∇iN (τi)|dτj ̸=i. (33)

As we are integrating over all τj ̸=1, integration becomes
multiplication with the domain’s measure, 1.

|∇iN (τi)|. (34)

C. Hessian derivation
The diagonal elements of the Hessian of the Gaussian are

∇2N (τ )ii =
∂2
i N (τ )

∂2τi
(35)

=
∂

∂τi
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σ2
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 (36)

=
∂
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(
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σ2
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N (τj) (37)

=

(
− 1

σ2
+

τ2i
σ4
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j=1
j ̸=i

N (τj) (38)

=

(
− 1

σ2
+

τ2i
σ4

)
N (τ ). (39)

The non-diagonals of the Hessian of the Gaussian are

∇2N (τ )ij =
∂2N (τ )

∂iτi∂jτj
(40)

=
∂

∂τj

− τi
σ2

N (τi)
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 (41)

=
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=
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σ2
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k=1
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N (τk) (43)

=
τiτj
σ4

N (τ ). (44)

A remark: It might appear, that diagonal is a special case
of off-diagonal, but for differentiation, that is not true, as
on the diagonal, the variable we differentiate in respect to
appears twice, in the sense that duv/du = v and duv/dv =
u, but duu/du = 2u.

D. Sampling diagonal of Hessian
Similar to Sec. B, for the diagonal of the Hessian, we

can sample each dimension independently. Thus we can
first derive the valid distribution of the second-order deriva-
tive of the one-dimensional Gaussian by positivization and
scaling, and it will apply to higher dimensions: The one-
dimensional Gaussian’s second-order derivative is(

− 1

σ2
+

τ2i
σ4

)
N (τi) (45)
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Figure 6. Detailed plots of the functions involved in the derivation of the CDF for the diagonal elements of ∇2N , extending Fig. 3.

The roots of Eq. 45 are the τi for which(
− 1

σ2
+

τ2i
σ4

)
N (τi) = 0. (46)

As N (τi) > 0 for all τi, the product can be 0 only if

− 1

σ2
+

τ2i
σ4

= 0 and hence (47)

τi = ±σ. (48)

The function value between −σ < τi ≤ σ is negative
and hence needs to be positivised. Since the second-order
derivative should integrate to the gradient of the Gaussian,
we know that it reaches zero as τi reaches infinity. In con-
junction with the fact that the second-order derivative is
symmetric about the y-axis, we can conclude that the in-
tegral of the interval −σ < τi ≤ σ should be twice the size
of the integral of τi ≤ −σ = τi > σ. Thus, after positivisa-
tion the CDF should be scaled, such that it is 1

4 at τi = −σ.
Solving for these equalities, we can get:

β∇N (−σ) =
1

4
(49)

β =
1

4∇N (−σ)
. (50)

So, for the positivised rescaled second-order derivative
as a PDF of the distribution:

pHii = |β∇2N (τi)|. (51)

We can get the integrating constant by flipping and trans-
lating the scaled gradient of Gaussian to arrive at the CDF
function for the intervals:

PH
ii (τi) =


β∇N (τi) if τi < −σ,

1

2
+β∇N (τi) if τi ∈ [−σ, σ]

1−β∇N (τi) if τi > σ.

(52)

E. Grey-box differentials
Sometimes, differentials are in respect to a function that

is a composition z = f(y = g(x)) of an inner function
with known analytic differentials g (white box) and an outer
function f with differentials that need to be sampled (black
box). For first order (gradient), this is

∇z(z = f(g(x))) = (∇xg(x))
T · ∇yf(y = g(x)),

which means to take the Jacobian (as both g and f in general
are vector-valued) of the inner function g in respect to the
inner argument x and vector-matrix multiply this with the
gradient of the outer function f but in respect to the outer
argument y. For the second order it is

∇2
zf(g(x)) ≈ (∇xg(x))

T · ∇2
yf(g(x)) · ∇xg(x)

which means again to take the gradient of the inner function,
but multiply it with the Hessian, instead of the Jacobian of
the composition in respect to the outer argument [15].

The aim of this exercise is to have the sampled gradi-
ents handle only the black-box part and the analytic gradi-
ents handle the non-sampled [parts. As the analytic parts
are typically large (e.g., in the order of the size of a neural
network) compared to the number of physical rendering pa-
rameters (placement of light, cameras or objects) this can
provide substantial advantages.

F. BFGS/LBFGS method
Quasi-Newton methods are also a way to utilize the sec-

ond order information for optimization, however they ap-
proximates these information with zero or first order in-
formation. We tested the a family of algorithms from the
quasi-Newton methods that is known to be most effective,
the BFGS algorithms [28]. For this family of algorithms,
the vanilla BFGS algorithm [27], along with BFGS with
Armijo-Wolfe line search [20], LBFGS [20], were tested
but they only converge for the QUAD task. This is proba-
bily due to the noisy nature of the derivative estimation. To
this end, damped BFGS [23], and adaptive finite difference
BFGS [1] were also added but neither changed the conver-
gence of other tasks.
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